Progressie in het begrijpen van ons weer en klimaat: het Buys-Ballot najaarssymposium 2007

GERT-JAN STEEVEYLD, ALEXANDER BAKKER, JANNEKE ETTEMA, RIANNIE GEISEN, ALWIN HAKLANDER, CHIEL VAN HEERWAARDE, YVONNE HINSSER, FEMKE DE JONG, ROBERT LEANDER, THOMAS REERINK en ADRIAAN ZUIDERWEG.

(1: KNMI, 2: IMAU, 3: Wageningen Univ., 4: NIOZ, 5: TUE)

De recente constatering dat ons klimaat in hoog tempo verandert is aanleiding geweest voor een explosie aan klimaatonderzoek. Nieuwe kennis roept nieuwe vragen op, en dus blijft er nog van alles te onderzoeken. Zelfs in het jongste IPCC rapport blijven de onzekerheden op veel gebieden groot. De Buys-Ballot onderzoeksschool (met het IMAU, Wageningen Universiteit, KNMI, NIOZ, en het Max Planck Instituut als leden) is het overkoepelend orgaan op het gebied van klimaatonderzoek in Nederland, waarin jonge onderzoekers worden opgeleid en begeleid. Op 1 en 2 november 2007 verzamelden onderzoekers die zijn aangesloten bij de Buys-Ballot onderzoeksschool zich in Dalfsen om op een enthousiaste manier verslag te doen van hun jongste klimaatonderzoek. Hier volgt een aantal korte samenvattingen van onderzoek waarop op dit moment aan gewerkt wordt.

Massabalans van de Groenlandse ijskap

JANNEKE ETTEMA (IMAU), MICHEL VAN DEN BROEKE (IMAU), ERIC VAN MEDAARD (KNMI)

Wereldwijd stijgt de gemiddelde temperatuur, maar het is niet eenduidig wat ben we de parameterisatie van het ijs-sneeuwpakket verbeterd. Penetratie en het herbevriezen van smeltwater in de sneeuw is zeer belangrijk voor de warmtehuishouding van de sneeuw en dus voor de massabalans. Smelt vindt plaats in een 20-100 km smalle zone langs de randen van de ijskap waar de gradienten in klimaat en topografie groot zijn. De horizontale resolutie van RACMO is op 11 km gezet om zodoende deze gebieden goed te simuleren in het model. Dit levert veel detail op in bijvoorbeeld de hoeveelheid smelt gedurende 1 jaar, zie figuur 1. De meeste smelt (circa 3,5 m water equivalent) treedt op langs de westkust. Deze modelresultaten komen goed overeen met metingen gedaan door het IMAU in dit gebied. Door met RACMO2.1 naar de afgelopen 50 jaar te kijken, krijgen we hopelijk een gedetailleerd beeld van de ruimtelijke en tijdsvariatie van het huidige klimaat en de massabalans van de Groenlandse ijskap.

Een regionale vergelijking van de huidige generatie gekoppelde klimaatmodellen met observaties

FEMKE DE JONG (NIOZ)

De Labrador Zee, tussen Newfoundland en Groenland, is een belangrijke schakel in de thermohaline circulatie. In dit gebied wordt het oppervlaktewater dat vanaf de evenaar naar de noordwestelijke Noord-Atlantische Oceaan is getransporteerd afgekoeld tot koud diep water dat terugstromt naar het zuiden. De hydrografie van dit gebied is goed beschreven, sinds 1938 worden er bijna elk jaar metingen gedaan van onder andere zoutgehalte en temperatuur. In dit project kijken we of de huidige generatie

Figuur 1. Hoeveelheid smelt gedurende 1 jaar in mm waterequivalent voor de Groenlandse ijskap berekend met het regionaal atmosferisch klimaatmodel RACMO2.1 op 11 km resolutie.

Figuur 2. Resultaten voor de vergelijking van de model-temperatuur en waargenomen temperatuur in de Labrador Zee. De zwarte punten geven het modelgemiddelde over alle seizoenen, de grijze punten over de zomer. De foutenbalken, een standaard deviatie boven en onder het gemiddelde, geven een maat voor de variabiliteit van de modellen. De zwarte horizontale lijn is de gemiddelde waargenomen temperatuur, de grijze lijnen liggen een standaard deviatie boven en onder dit gemiddelde.
variabiliteit in het Nederlandse winterklimaat. De sterkte van de NAO wordt gedegeven door de NAO-index, het drukverschil tussen IJsland en de Azoren. Een positieve NAO-index komt overeen met een hogere frequentie van milde westenwinden over West-Europa. Een verandering van de temperatuur zou dus kunnen samenhangen met een verandering in de NAO. De vraag is dan wel wat een verandering in de NAO kan veroorzaken. Speelt de hoger gelegen stratosfeer (~10-50 km) hierbij een rol? Mogelijk kan een verandering van ozon- of broeikasgasconcentraties in de stratosfeer een lokale verandering in potentiële vorticiteit (PV, een maat voor de circulatie en stabiliteit van een luchtpakketje) veroorzaken, wat weer kan leiden tot globale veranderingen in de wind. Door de gemiddelde zonale wind gedurende de januarmaaanden met een negatieve NAO-index af te trekken van die met een positieve NAO-index (zie figuur 3), wordt duidelijk dat de verschillen zich niet tot de troposfeer beperken. Hetzelfde kan gedaan worden voor de PV, wat ook verschillen tot ongeveer 40 km hoogte laat zien. Door middel van een inversiemethode, waarbij het windveld uit het PV-veld wordt afgeleid, kan nu bekeken worden wat het effect van alleen de stratosferische PV op de wind in de troposfeer is. Deze invloed blijkt aan het oppervlak klein te zijn, maar er is wel enige invloed op de wind bovenin de troposfeer. Dit betekent dan het ontstaan van cyclonen, waardoor indirect ook de wind aan het oppervlak zou kunnen veranderen.

Figuur 3. Het verschil in gemiddelde zonale wind tussen januari maanden met een negatieve gemiddelde NAO index en die met een positieve gemiddelde NAO index (in m/s), als functie van de breedtegraad en de potentiële temperatuur (1500K ~ 40 km). De daargeweken lijn onderaan geeft het oppervlak aan en de gestreepte lijn de tropopauze.

Heeft de stratosfeer invloed op de winden aan het oppervlak?

YVONNE HINSSEN (IMAU)

De januari-temperatuur in De Bilt is de laatste 50 jaar met ongeveer 2°C toegenomen. Dit is meer dan de globaal gemiddelde temperatuurtoename. Dit wijst erop dat niet alleen een toename van broeikasgasconcentraties, maar mogelijk ook circulatieveranderingen een rol spelen. De Noord-Atlantische Oscillatie (NAO) bepaalt voor een groot deel de leren, is het belangrijk een beeld te hebben van het micro-klimaat op de gletsjer. Dit bepaalt namelijk de grootte van de energieverlies aan het oppervlak, zoals netto kortgolvende straling en turbulente fluxen. We hebben twee 5-jarige metereologische datasets vergeleken, gemeten door twee identieke automatische weerstations op twee gletsjers in Zuid-Noorwegen. De gletsjers, Storbreten en Midtdalsbreten, liggen 120 km van elkaar. Daggemiddelde luchtt temperature op de twee locaties is sterk gecorreleerd (zie figuur 4). Het windklimaat is echter heel verschillend, op Midtdalsbreten zijn windsnelheden gemiddeld een factor 1,8 groter dan op Storbreten. De oorzaak is het open landschap rond Midtdalsbreten, Storbreten wordt omsloten door bergen. Door de hogere windsnelheden zijn de turbulente fluxen bijna twee keer zo groot op Midtdalsbreten. Ook de nettostraling is groter op Midtdalsbreten, vanwege de minder frequente en minder dikke bewolking dan op Storbreten. Op Storbreten levert nettostraling gemiddeld 76% van de energie die wordt gebruikt voor het smelten van sneeuw en ijs, op Midtdalsbreten is dit 66%. De bodemwarmentestroom onttrekt 2% van de energie op beide locaties, de overige energie wordt geleverd door de turbulente fluxen.

Figuur 4. Daggemiddelde luchtt temperature op de gletsjers Storbreten en Midtdalsbreten.

Meteorologische metingen op twee gletsjers in Zuid-Noorwegen

RIANNE GIESEN, **LISS ANDREASSEN**, **MICHEL VAN DEN BROEK** en **HANS OERLEMANS**

Aan het oppervlak van gletsjers wordt voortdurend energie en massa uitgewisseld met de atmosfeer. Hierdoor reageren gletsjers sterk op schommelingen in het klimaat. Om de reactie van een gletsjer op klimaatverandering te kunnen model-
Extreome rivierafvoeren in een gewijzigd klimaat
ROBERT LEANDER EN ADRI BUISHAND (KNMI)
Vanuit het Nederlandse waterbeheer is de interesse in de gevolgen van klimaatverandering vooral gericht op de statistiek van extreme gebeurtenissen. Ons onderzoek richt zich op de verandering van extreme rivierafvoeren van de Maas in het winterhalve jaar met herhalingstijden in de orde van 1000 jaar. Uitgangspunt is de uitvoer van regionale klimaatmodellen (RCMs) aangedreven door globale circulaatiemodellen (GCMs). Met het oog op de lange herhalingstijden zijn voor deelstroomgebieden dagrseeven van 9000 jaar neerslag en temperatuur gegenereerd met dezelfde ruimtelijke en temporele samenhang als de 30-jarige dagreeksen uit de modelruns met behulp van de “Nearest-neighbour resampling”. Dit is gedaan voor zowel de modeldata uit de controle simulatie als die uit een simulatie voor het SRES A2-scenario. De lange reeksen zijn doorgerekend met een hydrologisch model voor de Maas. Voor twee RCM-GCM combinaties veranderen de afvoerextremen nauwelijs (figuur 6), doordat de toename van de gemiddelde neerslag in de winter gepaard gaat met een afname van de meerdaagse variabiliteit, terwijl bij een andere RCM-GCM combinatie de extremen zelfs meer toenemen dan het gemiddelde. Dit verschil wordt voornamelijk door het drijvende GCM veroorzaakt. Voor een realistisch beeld van de onzekerheid in de toekomstige afvoerextremen is een ensemble van RCM simulaties, aangedreven door verschillende GCMs aan te bevelen.

Figuur 5. Dwarsdoorsnede van een ijskap, overgaand in een drijvende ijsplaat in de kustzone.

Deelstroomgebieden dagrseeven van 9000 jaar neerslag en temperatuur gegenereerd met dezelfde ruimtelijke en temporele samenhang als de 30-jarige dagreeksen uit de modelruns met behulp van de “Nearest-neighbour resampling”. Dit is gedaan voor zowel de modeldata uit de controle simulatie als die uit een simulatie voor het SRES A2-scenario. De lange reeksen zijn doorgerekend met een hydrologisch model voor de Maas. Voor twee RCM-GCM combinaties veranderen de afvoereextremen nauwelijs (figuur 6), doordat de toename van de gemiddelde neerslag in de winter gepaard gaat met een afname van de meerdaagse variabiliteit, terwijl bij een andere RCM-GCM combinatie de extremen zelfs meer toenemen dan het gemiddelde. Dit verschil wordt voornamelijk door het drijvende GCM veroorzaakt. Voor een realistisch beeld van de onzekerheid in de toekomstige afvoerextremen is een ensemble van RCM simulaties, aangedreven door verschillende GCMs aan te bevelen.

Figuur 6. Relatieve verandering van afvoereextremen als functie van de herhalingstijd voor drie verschillende RCM-GCM combinaties.

Wolkenvorming boven heterogene landschappen
CHIEL VAN HEERWAARDEN (WAGENINGEN UNIVERSITEIT)
De aanwezigheid van kleinschalige heterogeniteiten (minder dan 20 km) in het landschap kan voor circulaties zorgen die niet worden opgelost door weermodellen. Er zijn aanwijzingen dat deze circulaties, ondanks hun beperkte ruimtelijke schaal, wolkenvorming kunnen bevorderen. Satellietwaarnemingen van delen van het Amazonengebied laten zien dat op plaatsen waar een patroon van beboste en onbeboste gebieden aanwezig is, er structureel meer wolken zijn dan boven homogeene beboste gebied. Dit fenomeen is nader onderzocht met een turbulentiemodel (large eddy simulation model). In dit driedimensionale model is het landoppervlak in twee delen gesplitst: een deel met een lage verdamping en een hoge voelbare warmteflux (het warme gebied), en een deel met een hoge verdamping en een lage voelbare warmteflux (het koude gebied). Dit systeem is op een tijdschaal van enkele uren onderzocht, waarbij er gekeken is naar het transport van warmte en vocht. Om de wolkenfysica voorlopig te vermijden zijn de begincondities zo gekozen dat er geen verzaadiging in de atmosfeer optreedt. Het blijkt dat er een circulatie ontstaat waarbij de wind aan het landoppervlak van het koude naar het warme gebied stroomt (figuur 7). Vervolgens stijgt hier de lucht op, om daarna aan de grenslaagtop terug te stromen naar het koude gebied. Deze circulatie heeft een aantal essentiële gevolgen voor wolkenvorming. De wind transportte turbulente wervels die veel vocht bevatten van het koude gebied naar het warme gebied, waar deze samenkomen met de relatief droge, maar veel sterkere turbulente wervels van het warme gebied. We hebben dus sterke turbulentie en veel vocht op dezelfde locatie, die gezamenlijk opstijgen naar de grenslaagtop. Dit lijkt een ideale situatie voor wolkenvorming. Aan de top van de grenslaag kan de relatieve vochtigheid tien procent hoger zijn dan boven een homogeen landschap met dezelfde gebiedsgemiddelde fluxen.

Gevolgen van klimaatverandering voor windenergie
ALEXANDER BAKKER (KNMI)
De planning van nieuwe windparken vereist een nauwkeurige inschatting van het
toekomstige windklimaat. De afgelopen jaren leek er in Noordwest Europa sprake van een daling van de jaarlijkse energie-opbrengst ten opzichte van het langjarige gemiddelde. Het is de vraag of hier sprake is van een trend die zal doorzetten of dat dit is toe te schrijven aan toevallige variaties. Een mogelijk dalende trend is slechts relevant voor schattingen van toekomstige opbrengsten, als deze trend zowel in de tijd als in de ruimte consistent is. De maandelijkse relatieve windopbrengst voor Nederland (Windex) wordt echter pas sinds 1988 systematisch bijgehouden aangezien dat het moment is van de start van de moderne windturbine-ontwikkeling. Voor een langere termijn is daarom een voorspelbare grootte nodig. In de praktijk blijkt de Windex (een relatieve maat voor de opbrengst van windturbines op maandbasis) zeer goed te correleren met de maandgemiddelde geostrofische windsnelheid ($R = 0.95$). Uit luchtdrukvelden van de ERA40 re-analysis database zijn zeer goede schattingen te maken van de maandgemiddelde geostrofische windsnelheid voor de periode van 1958 t/m 2001 (figuur 8). Voor deze periode blijkt er een positieve trend in de geostrofische wind voor Noordwest-Europa en een dalende trend voor Zuid-Europa. Dit ruimtelijke patroon wordt geassocieerd met een stijgende trend in de Noord-Atlantische Oscillatie (NAO) in de wintermaanden. Deze zelfde winter NAO kende een dalende trend voor de periode 1988 t/m 2006, wat consistent is met dalende trend in windenergieopbrengsten. De richting van de trend in de NAO is dus zeer gevoelig voor de onderzochte periode. Wanneer gegevens wordt naar een nog veel langere periode 1928-2006 wordt geen trend waargenomen. Wat betreft schattingen voor toekomstige windopbrengsten is het dan ook niet logisch om uit te gaan van eventuele trends en kan het best eenvoudig digweg gebruik gemaakt worden van het langjarig gemiddelde.

Variabiliteit van de meridionale circulatie in de stratosfeer

ALWIN HAKLANDER (TUE EN KNMI)

Gedurende de noordelijke wintermaanden is in de stratosfeer een meridionale circulatie aanwezig die oorzaak lucht vanaf de evenaar naar de Noordpool transporteert, waar de lucht daalt en adiabatisch opwarmt. Deze zogeheten Brewer-Dobson circulatie (BDC) wordt hoofdzakelijk gedreven door brekende planetaire (Rossby)golven: groot schalige zonale asymmetriën in bijvoorbeeld de temperatuur en de wind. In de stratosfeer worden de golven instabiel, waarna ze breken en een westwaartse volumekracht op de stroming uitoefenen. De sterkte van de BDC wordt bepaald door de opwaartse component van de 'Ekman-Palm' flux in de lage stratosfeer, die recht evenredig is met de poolwaartse warmteflux die de golven induceren. Hierin worden grote jaar-op jaar variaties waargenomen, die nog niet goed begrepen worden. Met behulp van de ERA-40 dataset van het ECMWF hebben we de poolwaartse warmteflux onderin de stratosfeer ontleed in de diverse zonale golfcomponenten, waaruit bleek dat de variabiliteit in de BDC wordt gedomineerd door een stationaire golf die één bredtecirkel in z'n geheel omspaat (golfgetal 1, figuur 9).

Deze golf vindt zijn oorsprong in de troposfeer, waarbij het vermogen om de stratosfeer te bereiken (en de BDC aan te drijven) afhankelijk is van of hij zich ten noorden of ten zuiden van ongeveer 40°N in de troposfeer opwaarts voortplant.

Ontwikkelingen in niet-methaan koolwaterstof isotopeonderzoek bij IAMU

ADRIAN ZUIDERLEG, RUPERT HOLZINGER EN THOMAS ROCKMANN (IAMU)

Atmosferische koolwaterstof sporengassen vormen een belangrijk onderdeel van de globale koolstofbalans en zijn 'chemical precursors' van ozon- en NOx-vorming. Lichte, niet-methaan koolwaterstoffen zoals ethaan komen vrij door verbruik van fossiele brandstoffen en bij het transport en het verbranden van biomassa, inclusief bosbranden. De exacte bronnen, verspreidingsdynamiek en de verwijderingsprocessen van deze koolwaterstoffen in de hoge atmosfeer zijn echter nog niet goed bekend. Om inzicht te krijgen in deze processen wordt isotopenonderzoek uitgevoerd, waarbij naar de stabiele isotoopenverhouding van koolstof wordt gekeken. Een verandering in de verhouding van koolwaterstoffen kan door, onder andere, oxidatie met OH-platssvind. Omdat de snelheid van deze reactie bekend is, is de verhouding zelf een indicatie van de emissieleefde in een monster. De isotopenverhouding van koolwaterstoffen zal worden gemeten in luchtdemonsters op 10 km hoogte tijdens het CARIBIC project, (geïnsturementeertelijnvliegtuig met een luchtmomsterplatform). Hiermee kunnen dan, in combinatie met de modellerij van de circulatie van sporengassen, de bronnen, verspreiding en verwijdering in de hogere lagen van de atmosfeer worden onderzocht. Dit is het uiteindelijke doel van ons werk. Om deze metingen te kunnen doen is een combinatie van een gaschromatografie en een isotopenmassaspectrometrie instrument ontworpen en gebouwd. De eerste testen van dit instrument met verschillende monsters geven aan dat het systeem te tevredenheid functioneert, met name dat de metingen van isotopeverhouding van ethaan met 0,1% herhaalbaar zijn. De eerste metingen van CARIBIC monsters zullen binnen enkele maanden plaatsvinden nadat het systeem verder ingesteld is.